
We did not examine the case of a bubble which is simultaneously undergoing pulsations 
and translation. Thus, Kelvin-Helmholtz instability of the bubble surface (connected with 
discontinuity of tangential velocity at the gas-liquid boundary) remains outside the scope 
of the present discussion. However, it can be suggested that, given sufficiently small ini- 
tial translation velocities of a bubble, Kelvin-Helmholtz instability will be less important 
than Taylor instability and the conclusions reached here will remain valid. 
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STUDY OF NONSTEADY LOADS IN THE ACCELERATED AND SUDDEN MOTION 

OF BODIES OF DIFFERENT FORM 

V. V. Podlubnyi and A. S. Fonarev UDC 533.6.011 

Together with the need to calculate the aerodynamic and strength characteristics of 
bodies during steady-state motion, it is often necessary to evaluate nonsteady forces acting 
during abrupt changes in the velocity regime - especially during sudden acceleration of a 
body from a state of rest to a specified steady flight velocity. It is interesting to deter- 
mine the additional loads (compared to the steady phase of motion) that develop during non- 
steady flow past the body. Hero, the important characteristics are the maximum possible pros- 
sure and force and the characteristic time of the nonsteady transitional processes~ 

Below we examine the problem of the accelerated motion of certain bodies (a sphere, 
a cylinder with a flat edge, and a cone) from a state of rest to a specified subsonic or 
supersonic velocity with different accelerations. We will include the case of sudden motion 
of the body with a prescribed velocity. Using a numerical method, we obtain the nonsteady 
aerodynamic characteristics of the body for different accelerations. An analytical method 
is proposed for calculating the pressure distribution at the initial moment of time and the 
maximum forces present in the case of sudden motion. 

i. Formulation of the Problem and Method of Numerical Solution. Let a solid of revolu- 
tion of a specified form begin to move from a state of rest at the initial moment of time 
t = 0. Moving with steady acceleraton during the time T, the body is assumed to reach a velo- 
city corresponding to a prescribed Mach number M. The gas is considered to be ideal and to 
be in a state of rest with a constant pressure P0 and density P0- The adiabatic exponent 
of the gas is y = 1.4. 

In the coordinate system connected with the body, the flow of the gas is described by 
the two-dimensional nonsteady Euler equations 

o o 0 (py) + ~ (puy) + -~y (pry) = O, 

o o o (puy) + ~ [(p + pu ~) y] + N-y (puvy) = O, 
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o o 
(pvu) + ~ (ouvy) + ~ [(p + pv ") y] = p,. 

~---[P (e ~---E~) Y] +T= [gu(e-F 

and t h e  e q u a t i o n  o f  s t a t e  p = oe (x  - 1 ) .  H e r e ,  p i s  p r e s s u r e ;  P, d e n s i t y ;  u and v ,  l o n g i -  
t u d i n a l  and v e r t i c a l  componen t s  o f  v e l o c i t y  i n  t h e  C a r t e s i a n  c o o r d i n a t e  s y s t e m  x ,  y ;  e ,  s p e -  
c i f i c  energy of a unit mass of gas; t, time. 

We take the following as the characteristic dimensional values: the dimension of the 
body L, the unperturbed values of pressure P0 and density P0, velocity u 0 = v~0, time t o = 
L/u0, and force F = p0 L2. The quantity L is the radius of the sphere, the base of the cylinder, 
or the base of the cone. All of the results will be given in dimensionless form. 

We will solve the problem by the finite difference scheme of Godunov [I], using a modified 
program for study of two-dimensional nonsteady flow about bodies of different form [2, 3]. 
We assign conditions of impermeability as the boundary conditions on the body and on the sym- 
metry axis. The initial conditions correspond to the state of rest. 

The problem is solved on a computational grid consisting of N rays emanating from the 
coordinate origin and K concentric lines that repeat the form of the body (N • K = 135 • 51). 
For example, for a sphere these are concentric circles approximately replaced by broken lines. 
The subdivision of the grid is uniform with respect to the angle and nonuniform over the ra- 
dius. In the case of the radius, the step size increases in a geometric progression toward 
the outside boundary of the grid. This boundary is located about 10-12 characteristic dimen- 
sions from the center of the body. 

2. Results of Numerical Calculations. We performed a series of calculations for the 
problem of the acceleration of two bodies - a sphere and a semiinfinite cylinder with its 
end turned toward the flow. Here we used different accelerations corresponding to the time 
of acceleration T = 0.1-1.8. Figure 1 shows the time dependence (solid curves) of the non- 
steady total force for a sphere of unit radius with different values of T and M = 2. With 
an increase in acceleration, the maximum increases and approaches the limiting value F s (at 
T = 0). This corresponds to instantaneous motion with M = 2. 

It should be noted that even for relatively slow accelerations (T = 1-2; T = 1 is the 
time of propagation of perturbations over -1.2 radii of the body) there is appreciable "over- 
shooting" of the force compared to the steady-state value (by about 20%). In the case of 
sudden motion, this overshooting reaches 80%. The dashed line in Fig. 1 corresponds to the 
moment of time when the instantaneous velocity of the body reaches M = 1 (the increase in 
the force up to this moment of time is nearly linear in character). Lines 1 and 3 correspond 
to the maximum forces on the cylinder and the forces with different accelerations of the 
sphere; the overshooting of the maximum force F c during sudden motion relative to the steady- 
state value (line 2) is about 50%. 
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The dependence of the nonsteady force on time with instantaneous acceleration for the 
same bodies was also obtained for M = 0.8 (Fig. 2, where curve i shows the results for the 
end of the cylinder and curve 2 shows data for the sphere). 

Figure 3 (M = 0.8) shows the dependence of pressure on time at the frontal point of the 
bodies. Pressure is initially constant for the end of the semiinfinite cylinder (curve I). 
After arrival of the perturbations from the edge, the pressure decreases to a value equal 
to the stagnation pressure at the critical point in steady motion of the body. The charac- 
teristic time of the transitional process and the characteristic time of action of the non- 
steady force for the end of the cylinder are of the same order of magnitude as for the sphere 
(line 2, At = I). The maximum pressure for the cylinder is 1.8 times greater than the steady- 
state pressure, while the maximum pressure for the sphere is 1.65 times greater. It follows 
from the above analysis that the maximum loads correspond to instantaneous acceleration and 
develop at the initial moment of time. They can be found by the method described below, which 
is simpler than numerical calculation of the entire problem. 

3. Method of Calculating the Maximum Loads. We will study the case when a body of a 
specified form suddenly changes from a state of rest to a state of uniform motion with a pre- 
scribed Mach number. We formulate the following problem: find the pressure distribution 
on the surface of the body and the instantaneous force at the initial moment of time, which 
determine the maximum loads. 

We will examine the coordinate system x, y, z connected with the body. We construct 
the plane z = 0 so that the component of the external normal on z is directed upward at 
z > 0 and downward at z < 0 (it is assumed that such a plane exists for the bodies being ex- 
amined; however, this restriction is not essential, and the method can be used for bodies 
of arbitrary form). 

We assign the equation of the surface of the body in the form of two surfaces located 
in upper and lower half-spaces: 

z ~ O ,  z = ~ ,  y); z -~O,  z = z _ ~ ,  y). ( 3 . 1 )  

The components of the vector of the external normal n can be written in the form 

z~>O, n~ = 

yt.y 

Oz+ Oz+ 

Ox Oy 

V v 
--1 

n z = 

10 +r 
Oz 

Ox 

Oz 
Oy 

+ k--bu=) + ~ ou j ~ + ~'-~--~j + C'YU, 

(3 ,2 )  

The velocity vector of the incoming flow, forming the angle ~ with the x axis, is V = i~V~ • 
cos ~ + kV~sina. We find the projection of velocity on the normal to the body: V n = 
(V, n) = V~n x cos a + V=n z sin~. Rarefaction develops on the surface at V n > 0 (we will desig- 
nate it as a_), while compression occurs at V n < 0 (the surface ~+). The condition V n = 0 
gives the interface between the regions of action of forces associated with pressure. In ac- 
cordance with the unidimensional theory of the decay of an arbitrary discontinuity [I, 4], we 
obtain the following formulas for the pressure at each point of the surface by solving the 
problem of the sudden motion of a piston in the direction of the normal to the body and changing 
over to the coordinate system connected with the body: in the case of compression, 

(3.3) 
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in the case of rarefaction, 

p _ = ( t  ,--i Mn) 2'/(v-~) 
2 ( 3 . 4 )  

(Mn = IVnl/'~; a~ is the speed of sound in the incoming flow). 

To find the total force in the direction of the x axis for an arbitrary body, it is ne- 
cessary to calculate the integrals over the surface by replacing it by small planar elements 
and passing to the limit: 

For a sphere of unit radius (3.5), we have 

Fx = 2~ S P+ (M,0 cos q~ sin ~dq) - -  

0 

0 

( 3 . 6 )  

Calculation of the first integral in (3.6) leads to the expression 

F~+ =2~{~ + v(v+1) M ' + 1 0  

32 In i + l -4 (.~ + t)~ M ~ -~ (~ + t)~ M~ (? + t)-------~ 
('f + t) 4 M 4 

( 3 . 7 )  

For the second integral in (3.6) we have 

FI = (Y- i) M ~ 3~ --i 
( 3 . 8 )  

Figure 4 shows the results of calculation of the forces from (3.7) and (3.8) for differ- 
ent M (y = 1.4). Here, lines 1 and 2 show the values of Fx + and Fx-, the dot-dashed line 
shows the force Fx+ - Fx-, and the dashed line shows Fx + calculated from the approximate 
formula 

F+=~(i +2?M + '('+ I)M2 ) 8 ' ( 3 . 9 )  

ob ta i ned  by expans ion  o f  Eq. ( 3 . 7 )  w i t h  sma l l  M. I t  can be seen from the  graph t h a t  Eq. ( 3 . 9 )  
s a t i s f a c t o r i l y  d e s c r i b e s  the  f o r c e  i n  t he  range M = 0 - 1 . 5 .  A t  7 = 1 .4  and M = 2, Fx + = 16.38 
and F x -  = 0 .5069;  t h e i r  d i f f e r e n c e  i s  shown i n  F ig .  1 by the  c i r c l e  F s. 

For a c y l i n d e r  o f  s p e c i f i e d  l e n g t h  w i t h  f l a t  ends a t  a zero  ang le  o f  a t t a c k ,  the  use 
of (3.5) gives 

s__Lv 

F~=~ I+ 4 M~+~M~ I+M~ -7- --~ I--Y-~/Mn 

The value of M n coincides with M. For M = 0.8, the force acting on the front end is equal 
to 8.72. The force on the rear end in this case is 0.927. The circle F c in Fig. 2 shows 
the theoretical value of the force on the front surface. 
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Using Eqs. (3.1)-(3.5) and the geometric characteristics of the body, we can obtain for- 
mulas for the pressure and the total force on bodies of different form, including the case 

of a nonzero angle of attack. 

As an example, let us examine a circular cone of finite length x 0 with a base of radius 
i. We direct the x axis along the axis of the cone. Then its surface is described by the 
equations z ~ O, z+ = ~2 _ y2; z < O, z- = -~xx ~ - y2 (x = x/x0). Calculating the derivatives, 

we determine the unit vector of the external normal 

>o ,  .+ = V ~ - ~ '  V ~ - ~ :  ~' V"+~--~ ~ -  ; 

~<o, ._:  Y ~ o '  V~-~-r. ~ ~' V~-~: 

Making the substitution x 0 = cosT/sin~, we finally have 

,<o o :{  V ,  1 
The projection of the velocity vector V on the normal n for z > 0 and z < 0 takes the form 
(the plus sign in the first case) 

Let us examine the region of angles of attack 0 ~ ~ ~ ~/2. Given this condition, com- 
pression always occurs on the lower surface. On the upper surface, the interface (compres- 
sion-rarefaction) is determined by the equation y/x = • - tan /tan~)2 We calculate the 
pressure at an arbitrary point on a cone at the initial moment of motion by using (3.3), (3.4), 
and (3.10). In the compression region (the minus sign corresponding to z < O, the plus sign 
to z > O) 

+ 

( 3 . 1 1 )  

The rarefaction region on the cone is formed at �9 < ~ and is found from the condition z > O, 
[Y/Xl ~ ~i (tan~/tana) 2. The pressure in this region 
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p_ = [ i -- ? ~------~ M ] -- cos = sin q) -~ sin ~ cos q) V I -- (~)2 I] 2v/(~'-i). (3.12) 

The rarefaction in the bottom part of the cone is calculated in the same manner as for the 
end of the cylinder. In accordance with (3.11) and (3.12), the maximum compression and rare- 
faction on the lateral surface of the cone arises at y = 0 on the bottom and top surfaces 
of the cone, respectively. 

Figure 5 shows the theoretical maximum forces acting on a body of finite dimensions (end 
of a cylinder, sphere, and cone with half divergence angle of 30 ~ - lines 1-3) in relation 
to the value of M associated with sudden motion at a = 0. 

The instantaneous loads on bodies of another form can be similarly determined. This 
includes three-dimensional configurations. 
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